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1 Introduction

jMAF is a Rough Set Data Analysis Framework written in Java language. It is based on java Rough Set
(jRS) library. jMAF and jRS library implement methods of analysis provided by the Dominance-based
Rough Set Approach and Variable Consistency Dominance-based Rough Set Approach. In the following,
we give basics of these two approaches and we provide an example of jMAF usage that is meant to instruct
novice users.

2 Basic Concepts of Dominance-based Rough Set Approach

Dominance-based Rough Set Approach (DRSA) is de�ned for problems with background knowledge about
ordinal evaluations of objects from a universe, and about monotonic relationships between these evaluations,
e.g. �the larger the mass and the smaller the distance, the larger the gravity� or �the greater the debt of a
�rm, the greater its risk of failure�. Precisely, the monotonic relationships are assumed between evaluation
of objects on condition attributes and their assignment to decision classes. The monotonic relationships
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are also interpreted as monotonicity constraints, because the better the evaluation of an object, the better
should be the decision class the object is assigned to. For this reason, classi�cation problems of this kind are
called ordinal classi�cation problems with monotonicity constraints. Many real-world classi�cation problems
fall into this category. Typical examples are multiple criteria sorting and decision under uncertainty, where
the order of value sets of attributes corresponds to increasing or decreasing order of preference of a decision
maker. In these decision problems, the condition attributes are called criteria.

Although DRSA is a general methodology for reasoning about data describing ordinal classi�cation
problems with monotonicity constraints, in this manual, we shall use the vocabulary typical for multiple
criteria sorting problems.

2.1 Decision Table

Let us consider a decision table including a �nite universe of objects (solutions, alternatives, actions) U
evaluated on a �nite set of condition attributes F = {f1, . . . , fn}, and on a single decision attribute d.

Table 1: Exemplary decision table with evaluations of students

Student f1 - Mathematics f2 - Physics f3 - Literature d - Overall Evaluation
S1 good medium bad bad
S2 medium medium bad medium
S3 medium medium medium medium
S4 good good medium good
S5 good medium good good
S6 good good good good
S7 bad bad bad bad
S8 bad bad medium bad

The set of the indices of attributes is denoted by I = {1, . . . , n}. Without loss of generality, fi : U → <
for each i = 1, . . . , n, and, for all objects x, y ∈ U , fi(x) ≥ fi(y) means that �x is at least as good as y
with respect to attribute i�, which is denoted by x �i y. Therefore, it is supposed that �i is a complete
preorder, i.e. a strongly complete and transitive binary relation, de�ned on U on the basis of quantitative
and qualitative evaluations fi(·). Furthermore, decision attribute d makes a partition of U into a �nite
number of decision classes, Cl={Cl1, . . . , Clm}, such that each x ∈ U belongs to one and only one class Clt,
t = 1, . . . ,m. It is assumed that the classes are preference ordered, i.e. for all r, s = 1, . . . ,m, such that
r > s, the objects from Clr are preferred to the objects from Cls. More formally, if � is a comprehensive
weak preference relation on U , i.e. if for all x, y ∈ U , x�y reads �x is at least as good as y�, then it is
supposed that

[x∈Clr, y∈Cls, r>s] ⇒ x�y,

where x�y means x�y and not y�x.
The above assumptions are typical for consideration of an ordinal classi�cation (or multiple criteria

sorting) problem. Indeed, the decision table characterized above, includes examples of ordinal classi�cation
which constitute an input preference information to be analyzed using DRSA.

The sets to be approximated are called upward union and downward union of decision classes, respectively:

Cl≥t =
⋃
s≥t

Cls, Cl≤t =
⋃
s≤t

Cls, t = 1, ...,m.

The statement x ∈ Cl≥t reads �x belongs to at least class Clt�, while x ∈ Cl≤t reads �x belongs to at most
class Cl t�. Let us remark that Cl≥1 = Cl≤m = U , Cl≥m=Clm and Cl≤1 =Cl1. Furthermore, for t=2,...,m,

Cl≤t−1 = U − Cl≥t and Cl≥t = U − Cl≤t−1 .

2.2 Dominance cones as granules of knowledge

The key idea of DRSA is representation (approximation) of upward and downward unions of decision classes,
by granules of knowledge generated by attributes being criteria. These granules are dominance cones in the
attribute values space.
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x dominates y with respect to set of attributes P ⊆ F (shortly, x P-dominates y), denoted by xDP y, if
for every attribute fi ∈ P , fi(x) ≥ fi(y). The relation of P -dominance is re�exive and transitive, i.e., it is a
partial preorder.

Given a set of attributes P ⊆ I and x ∈ U , the granules of knowledge used for approximation in DRSA
are:

• a set of objects dominating x, called P -dominating set,
D+

P (x)={y ∈ U : yDP x},

• a set of objects dominated by x, called P -dominated set,
D−

P (x)={y ∈ U : xDP y}.

Let us recall that the dominance principle requires that an object x dominating object y on all considered
attributes (i.e. x having evaluations at least as good as y on all considered attributes) should also dominate
y on the decision (i.e. x should be assigned to at least as good decision class as y). Objects satisfying the
dominance principle are called consistent, and those which are violating the dominance principle are called
inconsistent.

2.3 Approximation of ordered decision classes

The P -lower approximation of Cl≥t , denoted by P (Cl≥t ), and the P -upper approximation of Cl≥t , denoted
by P (Cl≥t ), are de�ned as follows (t = 2, ...,m):

P (Cl≥t ) = {x ∈ U : D
+
P (x) ⊆ Cl≥t },

P (Cl≥t ) = {x ∈ U : D
−
P (x) ∩ Cl≥t 6= ∅}.

Analogously, one can de�ne the P -lower approximation and the P -upper approximation of Cl≤t as follows
(t = 1, ...,m− 1):

P (Cl≤t ) = {x ∈ U : D
−
P (x) ⊆ Cl≤t },

P (Cl≤t ) = {x ∈ U : D
+
P (x) ∩ Cl≤t 6= ∅}.

The P -lower and P -upper approximations so de�ned satisfy the following inclusion property, for all
P ⊆ F :

P (Cl≥t ) ⊆ Cl≥t ⊆ P (Cl≥t ), t = 2, . . . ,m,

P (Cl≤t ) ⊆ Cl≤t ⊆ P (Cl≤t ), t = 1, . . . ,m− 1.

The P -lower and P -upper approximations of Cl≥t and Cl≤t have an important complementarity property,
according to which,

P (Cl≥t ) = U�P (Cl≤t−1) and P (Cl≥t ) = U�P (Cl≤t−1), t=2,...,m,

P (Cl≤t ) = U�P (Cl≥t+1) and P (Cl≤t ) = U�P (Cl≥t+1), t=1,...,m�1.

The P -boundary of Cl≥t and Cl≤t , denoted by BnP (Cl≥t ) and BnP (Cl≤t ), respectively, are de�ned as
follows:

BnP (Cl≥t ) = P (Cl≥t )�P (Cl≥t ), t = 2, . . . ,m,

BnP (Cl≤t ) = P (Cl≤t )�P (Cl≤t ), t = 1, . . . ,m− 1.

Due to the above complementarity property, BnP (Cl≥t ) = BnP (Cl≤t−1), for t = 2, ...,m.
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2.4 Quality of approximation

For every P ⊆ F , the quality of approximation of the ordinal classi�cation Cl by a set of attributes P is
de�ned as the ratio of the number of objects P -consistent with the dominance principle and the number
of all the objects in U . Since the P -consistent objects are those which do not belong to any P -boundary
BnP (Cl≥t ), t = 2, . . . ,m, or BnP (Cl≤t ), t = 1, . . . ,m − 1, the quality of approximation of the ordinal
classi�cation Cl by a set of attributes P , can be written as

γP (Cl) =

∣∣∣U −

( ⋃
t=2,...,m

BnP (Cl≥t )

)∣∣∣
|U |

=

∣∣∣U −

( ⋃
t=1,...,m−1

BnP (Cl≤t )

)∣∣∣
|U |

.

γP (Cl) can be seen as a degree of consistency of the objects from U , where P is the set of attributes being
criteria and Cl is the considered ordinal classi�cation.

Moreover, for every P ⊆ F , the accuracy of approximation of union of ordered classes Cl≥t , Cl≤t by a
set of attributes P is de�ned as the ratio of the number of objects belonging to P -lower approximation and
P -upper approximation of the union. Accuracy of approximation αP (Cl≥t ), αP (Cl≤t ) can be written as

αP (Cl≥t ) =

∣∣∣P (Cl≥t )
∣∣∣

|P (Cl≥t )|
, αP (Cl≤t ) =

∣∣∣P (Cl≤t )
∣∣∣

|P (Cl≤t )|
.

2.5 Reduction of attributes

Each minimal (with respect to inclusion) subset P ⊆ F such that γP (Cl) = γF (Cl) is called a reduct of Cl ,
and is denoted by REDCl . Let us remark that for a given set U one can have more than one reduct. The
intersection of all reducts is called the core, and is denoted by CORECl. Attributes in CORECl cannot be
removed from consideration without deteriorating the quality of approximation. This means that, in set F ,
there are three categories of attributes:

• indispensable attributes included in the core,

• exchangeable attributes included in some reducts, but not in the core,

• redundant attributes, neither indispensable nor exchangeable, and thus not included in any reduct.

2.6 Decision Rules

The dominance-based rough approximations of upward and downward unions of decision classes can serve to
induce a generalized description of objects in terms of �if . . . , then . . . � decision rules. For a given upward
or downward union of classes, Cl≥t or Cl≤s , the decision rules induced under a hypothesis that objects
belonging to P (Cl≥t ) or P (Cl≤s ) are positive examples, and all the others are negative, suggest a certain
assignment to �class Clt or better�, or to �class Cls or worse�, respectively. On the other hand, the decision
rules induced under a hypothesis that objects belonging to P (Cl≥t ) or P (Cl≤s ) are positive examples, and
all the others are negative, suggest a possible assignment to �class Clt or better�, or to �class Cls or worse�,
respectively. Finally, the decision rules induced under a hypothesis that objects belonging to the intersection
P (Cl≤s )∩P (Cl≥t ) are positive examples, and all the others are negative, suggest an approximate assignment
to some classes between Cls and Clt (s < t).

In the case of preference ordered description of objects, set U is composed of examples of ordinal classi-
�cation. Then, it is meaningful to consider the following �ve types of decision rules:

1) certain D≥-decision rules, providing lower pro�le descriptions for objects belonging to P (Cl≥t ):
if fi1(x) ≥ ri1 and . . . and fip(x) ≥ rip , then x ∈ Cl≥t ,
{i1, . . . , ip} ⊆ I, t = 2, . . . ,m, ri1 , . . . , rip

∈ <;

2) possible D≥-decision rules, providing lower pro�le descriptions for objects belonging to P (Cl≥t ):
if fi1(x) ≥ ri1 and . . . and fip(x) ≥ rip , then x possibly belongs to Cl≥t ,
{i1, . . . , ip} ⊆ I, t = 2, . . . ,m, ri1 , . . . , rip

∈ <;

3) certain D≤-decision rules, providing upper pro�le descriptions for objects belonging to P (Cl≤t ):
if fi1(x) ≤ ri1 and . . . and fip(x) ≤ rip , then x ∈ Cl≤t ,
{i1, . . . , ip} ⊆ I, t = 1, . . . ,m− 1, ri1 , . . . , rip

∈ <;
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4) possible D≤-decision rules, providing upper pro�le descriptions for objects belonging to P (Cl≤t ):
if fi1(x) ≤ ri1 and . . . and fip

(x) ≤ rip
, then x possibly belongs to Cl≤t ,

{i1, . . . , ip} ⊆ I, t = 1, . . . ,m− 1, ri1 , . . . , rip ∈ <;

5) approximate D≥≤-decision rules, providing simultaneously lower and upper pro�le descriptions for
objects belonging to Cls∪Cls+1∪. . .∪Cl t, without possibility of discerning to which class:
if fi1(x) ≥ ri1 and . . . and fik

(x) ≥ rik
and fik+1(x) ≤ rik+1 and . . . and fip(x) ≤ rip , then x ∈

Cls ∪ Cls+1 ∪ . . . ∪ Clt,
{i1, . . . , ip} ⊆ I, s, t ∈ {1, . . . ,m}, s < t, ri1 , . . . , rip ∈ <.

In the premise of a D≥≤-decision rule, there can be �fi(x) ≥ ri� and �fi(x) ≤ r′i�, where ri ≤ r′i, for the
same i ∈ I. Moreover, if ri = r′i, the two conditions boil down to �fi(x) = ri�.

Since a decision rule is a kind of implication, a minimal rule is understood as an implication such that
there is no other implication with the premise of at least the same weakness (in other words, a rule using
a subset of elementary conditions and/or weaker elementary conditions) and the conclusion of at least the
same strength (in other words, a D≥- or a D≤-decision rule assigning objects to the same union or sub-union
of classes, or a D≥≤-decision rule assigning objects to the same or smaller set of classes).

The rules of type 1) and 3) represent certain knowledge extracted from data (examples of ordinal clas-
si�cation), while the rules of type 2) and 4) represent possible knowledge; the rules of type 5) represent
doubtful knowledge, because they are supported by inconsistent objects only.

Given a certain or possible D≥-decision rule r ≡ �if fi1(x) ≥ ri1 and . . . and fip
(x) ≥ rip

, then x ∈ Cl≥t �,
an object y ∈ U supports r if fi1(y) ≥ ri1 and . . . and fip(y) ≥ rip . Moreover, object y ∈ U supporting
decision rule r is a base of r if fi1(y) = ri1 and . . . and fip(y) = rip . Similar de�nitions hold for certain or
possible D≤-decision rules and approximate D≥≤-decision rules. A decision rule having at least one base is
called robust. Identi�cation of supporting objects and bases of robust rules is important for interpretation of
the rules in multiple criteria decision analysis. The ratio of the number of objects supporting a rule and the
number of all considered objects is called relative support of a rule. The relative support and the con�dence
ratio are basic characteristics of a rule, however, some Bayesian con�rmation measures re�ect much better
the attractiveness of a rule [21].

A set of decision rules is complete if it covers all considered objects (examples of ordinal classi�cation)
in such a way that consistent objects are re-assigned to their original classes, and inconsistent objects are
assigned to clusters of classes referring to this inconsistency. A set of decision rules is minimal if it is complete
and non-redundant i.e., exclusion of any rule from this set makes it incomplete.

Note that the syntax of decision rules induced from rough approximations de�ned using dominance cones,
is using consistently this type of granules. Each condition pro�le de�nes a dominance cone in n-dimensional
condition space <n, and each decision pro�le de�nes a dominance cone in one-dimensional decision space
{1, . . . ,m}. In both cases, the cones are positive for D≥-rules and negative for D≤-rules.

Let us also remark that dominance cones corresponding to condition pro�les can originate in any point
of <n, without the risk of their being too speci�c. Thus, contrary to traditional granular computing, the
condition space <n need not be discretized.

Procedures for rule induction from dominance-based rough approximations have been proposed in [19].
The following section 3 presents example of use of jMAF for sorting problem (called also multi-criteria
classi�cation or ordered classi�cation with monotonicity constraints). The surveys [13, 14, 15, 31, 32] include
applications of DRSA.

2.7 Variable Consistency Dominance-based Rough Set Approaches

In DRSA, lower approximation of a union of ordered classes contains only consistent objects. Such a lower
approximation is de�ned as a sum of dominance cones that are subsets of the approximated union. In
practical applications, however, such a strong requirement may result in relatively small lower approxima-
tions. Therefore, several extensions of DRSA have been proposed. These extensions relax the condition
for inclusion of an object to the lower approximation. Variable Consistency Dominance-based Rough Set
Approaches (VC-DRSA) include to lower approximations objects which are su�ciently consistent. Di�erent
measures of consistency may be applied in VC-DRSA. Given a user-de�ned threshold value, extended lower
approximation of a union of classes is de�ned as a set of objects for which the consistency measure satis�es
that threshold.

Several de�nitions of VC-DRSA have been considered in the literature so far. In the �rst papers concern-
ing VC-DRSA [11, 20], consistency of objects have been calculated using rough membership measure [26, 36].
Then, in order to ensure monotonicity of lower approximation with respect to the dominance relation, the
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idea of the �rst papers have been extended in the work [2]. Recently, it has been pointed out that it is rea-
sonable to require that consistency measure used in the de�nition of the lower approximation satis�es some
properties of monotonicity [4]. Resulting variable consistency approaches, employing monotonic consistency
measures, are called Monotonic Variable Consistency Dominance-based Rough Set Approaches [3, 4].

3 Example of Use

We present a didactic example which illustrates application of jMAF in data analysis.

3.1 Running jMAF

You may �nd jMAF executable �le in the location where you have unpacked the zip �le that can be down-
loaded from http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html. Please launch this �le. A
moment later you will see main jMAF window on your desktop. It should resemble the one presented in
Figure 1.

Figure 1: jMAF main window

Now you have jAMM running in workspace folder located in the folder where it was launched from. You
can check the content of workspace folder by examining the explorer window. The main jMAF window is
divided into 4 sub windows: topmost menubar and toolbar, middle explorer and results window and bottom
console window. There is also a status line at the bottom.

3.2 Decision Table

Let us consider the following ordinal classi�cation problem. Students of a college must obtain an overall
evaluation on the basis of their achievements in Mathematics, Physics and Literature. These three subjects
are clearly criteria (condition attributes) and the comprehensive evaluation is a decision attribute. For
simplicity, the value sets of the attributes and of the decision attribute are the same, and they are composed
of three values: bad, medium and good. The preference order of these values is obvious. Thus, there are
three preference ordered decision classes, so the problem belongs to the category of ordinal classi�cation.
In order to build a preference model of the jury, DRSA is used to analyze a set of exemplary evaluations
of students provided by the jury. These examples of ordinal classi�cation constitute an input preference
information presented as decision table in Table 2.
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Note that the dominance principle obviously applies to the examples of ordinal classi�cation, since an
improvement of a student's score on one of three attributes, with other scores unchanged, should not worsen
the student's overall evaluation, but rather improve it.

Table 2: Exemplary decision table with evaluations of students (examples of ordinal classi�cation)

Student Mathematics Physics Literature Overall Evaluation
S1 good medium bad bad
S2 medium medium bad medium
S3 medium medium medium medium
S4 good good medium good
S5 good medium good good
S6 good good good good
S7 bad bad bad bad
S8 bad bad medium bad

Observe that student S1 has not worse evaluations than student S2 on all the considered condition
attributes, however, the overall evaluation of S1 is worse than the overall evaluation of S2. This violates
the dominance principle, so the two examples of ordinal classi�cation, and only those, are inconsistent. One
can expect that the quality of approximation of the ordinal classi�cation represented by examples in Table
2 will be equal to 0.75.

3.3 Data File

As the �rst step you should create a �le containing data from the data table. You have now two choices -
you may use spreadsheet-like editor or any plain text editor. For this example, we will focus on the second
option.

Run any text editor that is available on your system installation. Enter the text shown below.

**ATTRIBUTES

+ Mathematics : [bad, medium, good]

+ Physics : [bad, medium, good]

+ Literature : [bad, medium, good]

+ Overall : [bad, medium, good]

decision: Overall

**PREFERENCES

Mathematics : gain

Physics : gain

Literature : gain

Overall : gain

**EXAMPLES

good medium bad bad

medium medium bad medium

medium medium medium medium

good good medium good

good medium good good

good good good good

bad bad bad bad

bad bad medium bad

**END

Now, save the �le as students.isf (for example in the jMAF folder). At this moment you are able to open
this �le in jMAF.
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3.4 Opening isf File

Use File | Open to open isf �le. You will see a typical �le open dialog. Please select your newly created
�le. Alternatively, you can double click �le in the explorer window if you have saved it in the workspace
folder. If the �le is not visible in explorer window, try right clicking on the explorer window and select from
the context menu Refresh or Switch workspace to choose di�erent workspace folder.

Figure 2: File students.isf opened in jMAF

3.5 Calculation of Dominance Cones

One of the �rst steps of data analysis using rough set theory is calculation of dominance cones (P -dominating
sets and P -dominated sets). To perform this step, you can select an example from the isf �le in results window
and use Calculate | P-Dominance Sets | Calculate dominating set or Calculate | P-Dominance
Sets | Calculate dominated set. You can also use these options from the toolbar menu. The resulting
dominance cones for student S1 are visible in Figures 3 and 4.
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Figure 3: P -dominating cone of Example 1

Figure 4: P -dominated cone of Example 1

3.6 Calculation of Approximations

The next step in rough set analysis is calculation of approximations. Use Calculate | Unions of classes
| Standard unions of classes to calculate DRSA unions and their approximations. Now, you should see
an input dialog for calculation of approximations. It should look like the one presented in Figure 5.
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Figure 5: Input dialog for calculation of approximations

Leave default value of the consistency level parameter if you are looking for standard DRSA analysis.
You can also set consistency level lower than one, to perform VC-DRSA analysis. This part is however not
covered by this guide. You should see the result as presented in Figure 6.

Figure 6: Approximations of unions of classes

You can navigate in Standard Unions window to see more details concerning calculated approximations
(they are presented in Figure 7).

As you can see, quality of approximation equals 0.75, and accuracy of approximation in unions of classes
ranges from 0.5 to 1.0. Lower approximation of union "at most" bad includes S7 and S8. Please select
Track in Editor option to track your selection from Standard Unions window in the results window.
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Figure 7: Details of approximations of unions of classes

3.7 Induction of Decision Rules

Given the above rough approximations, one can induce a set of decision rules representing the preferences of
the jury. We will use one of the available methods - minimal covering rules (VC-DOMLEM algorithm).The
idea is that evaluation pro�les of students belonging to the lower approximations can serve as a base for
some certain rules, while evaluation pro�les of students belonging to the boundaries can serve as a base for
some approximate rules. In the example we will consider, however, only certain rules.

To induce rules use Calculate | VC-DOMLEM algorithm. You will see a dialog with parameters of
rule induction that is presented in Figure 8. Leave default values of these parameters to perform standard
rule induction for DRSA analysis.

Figure 8: Dialog with parameters of rule induction

To select where the result �le with rules will be stored please edit output �le in the following dialog
(presented in Figure 9).

The resulting rules are presented in results window (see Figure 10).
Statistics of a rule selected in results window can be show by selectingOpen Statistics View associated

with selected rule from toolbar or from the context menu (right click on a rule). Statistics of the �rst rule
are presented in Figure 11.
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Figure 9: Dialog with parameters of rule induction

Figure 10: Decision rules

One can also see coverage of a rule (see Figure 12).
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Figure 11: Statistics of the �rst decision rule

Figure 12: Coverage of the �rst decision rule

3.8 Classi�cation

Usually data analyst wants to know what is the value of induced rules, i.e., how good they can classify
objects. Thus, we proceed with an example of reclassi�cation of learning data table for which rules were
induced. To perform reclassi�cation use Classify | Reclassify learning examples. You will see a dialog
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with classi�cation options. Select VCDRSA classi�cation method as it is presented in Figure 13. Should
you want to know more about VC-DRSA method, please see [1].

Figure 13: Dialog with classi�cation method

The results of classi�cation are presented in a summary window as it is shown in Figure 14. Use Details
button to see how particular objects were classi�ed. The resulting window is presented in Figure 15. In this
window, it is possible to see rules covering each of the classi�ed examples and their classi�cation.

Figure 14: Results of classi�cation
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Figure 15: Details of classi�cation

Column �Certainty� in Fig. 15 refers to classi�cation certainty score calculated in a way presented in [1].

4 Exemplary Applications of Dominance-based Rough Set Ap-

proach

There are many possibilities of applying DRSA to real life problems. The non-exhaustive list of potential
applications includes:

• decision support in medicine: in this area there are already many interesting applications (see, e.g.,
[27, 22, 23, 35]), however, they exploit the classical rough set approach; applications requiring DRSA,
which handle ordered value sets of medical signs, as well as monotonic relationships between the values
of signs and the degree of a disease, are in progress;

• customer satisfaction survey: theoretical foundations for application of DRSA in this �eld are available
in [16], however, a fully documented application is still missing;

• bankruptcy risk evaluation: this is a �eld of many potential applications, as can be seen from promising
results reported e.g. in [33, 34, 8], however, a wider comparative study involving real data sets is needed;

• operational research problems, such as location, routing, scheduling or inventory management: these
are problems formulated either in terms of classi�cation of feasible solutions (see, e.g., [7]), or in terms
of interactive multiobjective optimization, for which there is a suitable IMO-DRSA [18] procedure;

• �nance: this is a domain where DRSA for decision under uncertainty has to be combined with interac-
tive multiobjective optimization using IMO-DRSA; some promising results in this direction have been
presented in [17];

• ecology: assessment of the impact of human activity on the ecosystem is a challenging problem for
which the presented methodology is suitable; the up to date applications are based on the classical
rough set concept (see, e.g., [29, 6]), however, it seems that DRSA handling ordinal data has a greater
potential in this �eld.
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5 Glossary

Multiple attribute (or multiple criteria) decision support aims at giving the decision maker (DM) a recommen-
dation concerning a set of objects U (also called alternatives, actions, acts, solutions, options, candidates,...)
evaluated from multiple points of view called attributes (also called features, variables, criteria,...).

Main categories of multiple attribute (or multiple criteria) decision problems are:

• classi�cation, when the decision aims at assigning objects to prede�ned classes,

• choice, when the decision aims at selecting the best object,

• ranking, when the decision aims at ordering objects from the best to the worst.

Two kinds of classi�cation problems are distinguished:

• taxonomy, when the value sets of attributes and the prede�ned classes are not preference ordered,

• ordinal classi�cation with monotonicity constraints (also called multiple criteria sorting), when the
value sets of attributes and the prede�ned classes are preference ordered, and there exist monotonic
relationships between condition and decision attributes.

Two kinds of choice problems are distinguished:

• discrete choice, when the set of objects is �nite and reasonably small to be listed,

• multiple objective optimization, when the set of objects is in�nite and de�ned by constraints of a
mathematical program.

If value sets of attributes are preference-ordered, they are called criteria or objectives, otherwise they
keep the name of attributes.

Criterion is a real-valued function fi de�ned on U , re�ecting a worth of objects from a particular point
of view, such that in order to compare any two objects a, b ∈ U from this point of view it is su�cient to
compare two values: fi(a) and fi(b).

Dominance: object a is non-dominated in set U (Pareto-optimal) if and only if there is no other object
b in U such that b is not worse than a on all considered criteria, and strictly better on at least one criterion.

Preference model is a representation of a value system of the decision maker on the set of objects with
vector evaluations.

Rough set in universe U is an approximation of a set based on available information about objects of U .
The rough approximation is composed of two ordinary sets, called lower and upper approximation. Lower
approximation is a maximal subset of objects which, according to the available information, certainly belong
to the approximated set, and upper approximation is a minimal subset of objects which, according to the
available information, possibly belong to the approximated set. The di�erence between upper and lower
approximation is called boundary.

Decision rule is a logical statement of the type �if..., then...�, where the premise (condition part) speci�es
values assumed by one or more condition attributes and the conclusion (decision part) speci�es an overall
judgment.
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